
Type-checking Software Product Lines –
A Formal Approach

Christian Kästner

School of Computer Science
University of Magdeburg

39106 Magdeburg, Germany
kaestner@iti.cs.uni-magdeburg.de

Sven Apel

Dept. of Informatics and Mathematics
University of Passau

94030 Passau, Germany
apel@uni-passau.de

Abstract—A software product line (SPL) is an efficient means
to generate a family of program variants for a domain from
a single code base. However, because of the potentially high
number of possible program variants, it is difficult to test all
variants and ensure properties like type-safety for the entire SPL.
While first steps to type-check an entire SPL have been taken,
they are informal and incomplete. In this paper, we extend the
Featherweight Java (FJ) calculus with feature annotations to be
used for SPLs. By extending FJ’s type system, we guarantee that
– given a well-typed SPL – all possible program variants are well-
typed as well. We show how results from this formalization reflect
and help implementing our own language-independent SPL tool
CIDE.

I. INTRODUCTION

A software product line (SPL) is an efficient means to create
a family of related programs for a domain [5], [28]. Instead of
implementing each program from scratch, an SPL facilitates
reuse by modeling a domain with features (increments in func-
tionality relevant for stakeholders) and generating program
variants from some assets that are common to the SPL [20],
[5], [10].

In prior work, we developed the Colored Integrated Devel-
opment Environment (CIDE) for safely decomposing legacy
applications into features [21], [22]. CIDE is an SPL de-
velopment tool, in which code fragments of the underlying
code base are annotated with features. Program variants are
generated by evaluating feature annotations and removing code
fragments irrelevant for the variant, e.g., CIDE removes all
transaction code from a database when the transaction feature
is not required. The underlying principles of CIDE are similar
to ‘#ifdef’ statements in C’s preprocessor, Frames/XVCL [19],
or Gears [23], but more disciplined.

Due to the high number of variants that can be generated,
SPLs are inherently complex and testing them is difficult [28],
[30], [11], [7], [22]. Annotating arbitrary code fragments
leads typically to errors in generated program variants. We
distinguish between syntax errors (ill-formed with regard to
the language’s grammar), typing errors (ill-formed with regard
to language semantics) and behavioral errors (ill-behaved with
regard to program specification). In previous work, we ad-
dressed syntax errors intensively and prevent them in CIDE by
abstracting from the textual representation of the artifacts [22].

Behavioral errors have been studied extensively in program
specification and verification, although not in the context of
SPLs. In this paper, we focus on typing errors.

Type errors (in statically typed languages) are typically
detected during compilation after a program variant has been
generated. For example, dangling method references can easily
occur when annotating (and removing in some variants) a
method declaration, but not the method invocations. As some
program variants are never or rarely generated (e.g., only late
after initial development when a new customer requires such
a variant), potential typing problems might go undetected for
a long time during development. Therefore, a fundamental
goal is to check the entire SPL to guarantee that all possible
program variants are well-typed.

First steps toward type-checking an entire SPL have already
been taken [30], [11], [16], and also we already implemented
some preliminary checks based on annotations in CIDE [22].
However, all previous implementations were incomplete, i.e.,
they covered only a few language semantics rules considered
most important, but let other potential typing problems go
undetected. Although, they helped to prevent several common
compile-time errors, they did not guarantee that every variant
is well-typed. Such a guarantee for Java is very difficult due to
Java’s complexity and its rather informal, textual specification
(688 pages!) [14].

In this paper, we step back from full Java and formally
extend Featherweight Java (FJ) – a Java subset for which
type-soundness has been proved using a concise calculus [17].
Using this extended calculus named Color Featherweight
Java (CFJ), we can develop an SPL of which variants can
be generated as FJ programs. We formally prove that –
given a well-typed CFJ product line – all possible program
variants that can be generated are well-typed FJ programs,
i.e., generation preserves typing. Though this formalization
covers only a small subset of Java, it provides theoretical
insights about typing during the variant generation mechanism.
Furthermore, we discuss how these results are helpful for
developing SPL tools, especially our own tool CIDE.

II. BACKGROUND

A. CIDE

CIDE was originally designed to explore how code frag-
ments that implement a feature are scattered and interact inside
legacy applications. For our analysis, we typically marked
feature code on a printout with different colored text markers,
one color per feature. This turned out to be very useful, so that
the motivation for CIDE was to convey this color metaphor
to a Java IDE based on Eclipse. In CIDE, developers assign
features to code fragments, that are then highlighted with a
background color in the editor (one color per feature), just as
with the text marker on paper (see Fig. 1) . We refer to this
process simply as ‘coloring code’. Due to this metaphor, we
avoid adding explicit annotations like ‘#ifdef’ to the source
code, but store feature annotations separately.

Fig. 1. CIDE Screenshot

To create a program variant, a user selects the desired
features in a dialog. With this feature selection, CIDE removes
all code fragments from the SPL’s code base that are annotated
with colors not included in this selection. For example, if a
method is colored ‘red’ (with ‘red’ representing for example a
transaction feature) and ‘red’ is not selected, then the method
is removed.

Note that features may overlap, i.e., there might be code
fragments that belong to multiple features. This is typical
for code fragments that implement interactions (or glue code)
between features [24]. For example, while in a database the
features ‘transactions’ and ‘statistics’ are typically independent
and optional, there might be some common code that collects
statistics about transactions. This common code should only be
included in the program variant if both features are included. In
CIDE, the user can simply assign multiple features to a code
fragment, in that case the background colors are blended.1

When generating a variant, such glue code fragments are only
included if all assigned features are included.

1Though this does not allow feature code to be recognized solely from the
background colors, it indicates where a feature’s code starts and ends so that
the user can lookup the actual features manually via a tool tip.

CIDE’s approach to annotating code from a single code
base is similar to ‘#ifdef’ statements in C’s preprocessor,
Frames/XVCL [19], or Gears [23]. Thus, it is an alternative to
another category of SPL approaches that implement features
in physically separated modules, e.g., using components [29],
aspects [15], or feature modules [8], [1]. CIDE deliberately
aims at virtual separation of concerns in that concerns (or
features) are not physically modularized but just annotated,
while a tool infrastructure is provided to create views on the
code base.

One further concept in CIDE is important to understand
our formalization. To ensure that all created variants are
syntactically correct, CIDE only allows users to color code
fragments that are optional in the language’s syntax [22].
For example, in a Java file, it is possible to color entire
classes, methods, statements, or parameters (when removing
these elements the syntax remains valid). In contrast, it is not
allowed to color arbitrary fragments, e.g., solely the name of
a class (which might result in syntactically incorrect variants
with source code like ‘class extends Object {...}’), or the return
type of a method. Which parts are optional can be determined
automatically from the language’s grammar, as discussed in
detail in [22].

B. Feature Model

Features and their relations in an SPL are described by a
feature model [20]. The feature model describes what features
are available in an SPL and for which feature combinations
program variants can be created. A feature model consists of a
set of features F and some domain constraints DC which can
be described using propositional formulas [6], e.g., ‘FeatureA
implies FeatureB’:

FM = (F,DC)

In practice, feature models are usually visualized by feature
diagrams [20], [10], but those can be mapped to a feature set
and propositional formulas as well [6].

A program variant is specified by a selection of features v
(v ⊆ F). Only those variants are valid, for which the domain
constraints evaluate to true (valid(v)).

Without domain constraints there is an exponential num-
ber of possible variants (2|F |). With domain constraints, the
number is lower, but typically still so high that generating all
program variants to test them individually is not feasible [28],
[30], [11], [7], [22].

C. Featherweight Java

Featherweight Java (FJ) is a minimal functional subset
of the Java language that is specified formally with the FJ
calculus [17], [27]. The calculus specifies FJ’s type system
and evaluation strategy and has been proved type-sound. It
was designed to be compact; its syntax, typing rules and oper-
ational semantics fit on a single sheet of paper. FJ strips Java of
many advanced features like interfaces, abstract classes, inner
classes and even assignments, while retaining the core features
of Java typing. There is a direct correspondence between FJ

and a purely functional core of Java, in that every FJ program
is literally an executable Java program.

The motivation behind FJ was to experiment with formal
extensions of Java while focusing only on the core typing
features and neglecting many special cases that would require
a larger calculus, without raising substantially different typing
issues. Because of its simplicity even proofs for significant
extensions remain manageable. For the same reasons, we chose
FJ over other Java calculi like Classic Java [13], Javalight [25],
or Javas [12]. Besides many other examples, FJ was used to
formally discuss an extension of Java with generics [17], to
formally discuss inner classes [18], and to reason about new
composition techniques like nested inheritance [26].

In this paper, we use FJ because its compactness allows us
to formally discuss typing of entire SPLs. We are not aware of
any approach that discusses type safety of SPLs at a level of
granularity at which even method parameters can be optional.
Due to space limitations, we are not able to repeat the FJ
calculus here, however its mechanisms will become clear from
our formalization as we highlight our modifications and repeat
unmodified rules.

III. CFJ CALCULUS

With CFJ, we develop a calculus for SPLs. Though it is
based on FJ, it must be considered a separate language (not
an extended one) to describe an entire SPL instead of a single
program. SPLs written in CFJ are never directly executed, but
used to generate FJ programs as, we will show later.

A. Syntax and Annotations

First, we describe CFJ’s syntax and how feature annotations
are introduced in this calculus. For CFJ, we use the original
FJ syntax, as shown in Figure 2, with the only difference that
a CFJ program consists not only of a set of classes and a term,
but additionally of a feature model FM.2 As in FJ, we require
elements of lists to be named uniquely, e.g., there may not be
two methods with the same name in a class. Independent of
their actual storage, feature annotations are not included in the
syntax of the SPL, but provided externally, as in CIDE. In our
formalization, we introduce annotations using an annotation
table AT that maps code fragments to their annotation, similar
to the class table CT in FJ which maps class names to their
declaration. Note, AT takes code fragments as input – which
are determined by a node of the abstract syntax tree, by offset
and length, or some other mechanism – instead of the name
of a variable, method or class. This way, it is possible to
distinguish annotations on multiple elements with the same
name. The annotation table and class table are provided by
the compiler.

2The notation in [17] and [27] differ slightly. In general, we base our
description on the newer notation in [27]. Furthermore, we make slight
modifications to the notation: We use C f instead of C f to emphasize that
it is a list of pairs rather than a pair of lists; the same for C x and this.f=f.
Finally, we explicitly introduce the program P although it is technically not
a syntax rule, because it would cause asymmetries in our proof otherwise.

P ::=(L, t, FM) CFJ program (SPL)
L ::=class C extends C { C f; K M } class decl.
K ::=C(C f) { super(f); this.f=f; } constructor decl.
M::=C m(C x) { return t; } method decl.
t ::= terms:

x variable
t.f field access
t.m(t) method invocation
new C(t) object creation
(C)t cast

Fig. 2. CFJ Syntax

Following CIDE’s model of guaranteeing syntactic correct-
ness, only optional code fragments that can be removed with-
out invalidating the syntax, can be annotated (cf. Sec. II-A). In
CFJ, these are (printed bold in Fig. 2) elements of the class list
(L), of field and parameter lists (C f and C x), method lists (M),
term lists (t), super call parameter lists (f), or field assignments
(this.f=f). Because only these elements can be annotated and
removed, all variants are syntactically correct although they
might not be executable or well-typed, of course.

The annotation table is used the following way: AT (L)
returns the annotation of a class declaration, AT (C f) returns
the annotation for a field, AT (C x) returns the annotation
for a parameter, AT (M) returns the annotation for a method,
AT (t) returns the annotation for a term, AT (f) and AT (this.f=f)
return annotations for parameters and assignments inside the
constructor. Furthermore, we use AT (C) as syntactic sugar for
AT (CT (C)) to look up annotations on a class from a class
name.

To be specific, annotations on terms are a bit tricky. Terms
can be nested, but only few elements therein (namely pa-
rameters of method invocation and object creation) can be
annotated. Therefore, in order to use AT (t) for arbitrary terms
t we may need to perform a lookup to determine the relevant
annotation.3 Consider the following example method:

C m() { return new C(this.a).m(new D(),new E((C) this.b)); }

It contains several nested terms. The method declaration
contains a method invocation term of the form t.m(t), with
an object creation term (new C) as target, and two further
object creation terms (new D and new E) as parameters. The
first object creation term (new C) again has a field access
term as parameter; the last object creation term has a cast
term ((C)t) as parameter. The cast term again contains a field
access term. All field access terms contain a variable this.
Note, it is only possible to annotate the whole method, or
to annotate method invocation parameters and object creation
parameters. In our example, we underlined those parts that

3There are different ways of modeling annotations on terms. Another
way would be to use AT only for elements that can be colored and define
an additional auxiliary function that looks up annotations for other terms.
After several rewrites we settled with the current solution to implement the
lookup mechanism in the annotation table because it makes the following
formalization easier.

can be annotated. To determine an annotation on a term that
is not directly underlined, and thus does not have an annotation
itself, the AT function now searches the abstract syntax tree
upwards for the first parent that can be annotated and returns
its annotation. In the given example, this.b cannot be annotated
directly, thus AT (this.b) looks up its parent: the cast term (C)t.
This cast term can be annotated (it is an optional parameter of
the parent constructor invocation new E(...)), thus its annotation
is returned. Similarly, new C(...) cannot be annotated directly,
neither can its direct parent t.m(...), but the indirect parent the
method declaration C m() {...} is optional, thus AT (new C(...))
returns the annotation on the method.

B. Reasoning about Annotations

So far, we did not discuss the nature of feature annotations.
We are interested in expressing the following sentence ‘when-
ever code fragment a is present, then also code fragment b is
present’ based on the annotations. (We use the metavariables
a and b to refer to arbitrary annotatable program fragments.)
This is necessary, for example, to check whether a method
invocation in code fragment a can always reference a method
declaration in code fragment b, in all variants in that a is
present.

There are different approaches to model annotations that
allow such reasoning. As described in Section II-A, CIDE
annotates a set of features represented by colors to each code
fragment; code fragments are removed if any annotated feature
is not selected in a program variant. Alternatively in [30],
each code fragment is implicitly annotated with one feature;
the code fragment is removed if the annotated feature is not
selected and domain constraints do not say otherwise. Fi-
nally, in [11], arbitrary propositional formulas called presence
conditions like ‘FeatureA or FeatureB and not FeatureC’ are
annotated; code fragments for which the annotated formula
together with the domain constraints evaluates to false for a
given feature selection are removed. Although CIDE uses a
simpler mechanism, in this paper we use the most general
approach of annotating propositional formulas as presence
conditions. To include CIDE’s simpler interpretation, we map
annotated feature sets to an equivalent propositional formula
in that all selected features are conjuncted (e.g., glue code
annotated with {A,B,D} as A∧B∧D).

Thus, AT (a) returns a propositional formula for the code
fragment a as presence condition, in which variables can be
used for the features in F . This presence condition evaluates
to true for exactly those program variants (specified by feature
sets) in which the code fragment a should be included. We use
the term ‘a code fragment is present’ throughout this paper for
“the code fragment’s annotation evaluates to true, therefore the
element is not removed in the given variant(s)”.

To simplify the formalization, we incorporate the domain
constraints already into AT. The propositional formula returned
by AT consists of two conjuncted parts. The first part is
the user-specified or generated (e.g., in CIDE) propositional
formula, the second part are the SPL’s domain constraints.
Thus, invalid variants are not considered, i.e., they always

evaluate to false for all code fragments.
The sentence ‘whenever code fragment a is present, then

also code fragment b is present’ can be directly expressed as
implication between their propositional formulas:

AT (a)⇒ AT (b)

In the same way, the sentence ‘code fragments x and y are
present in the same program variants’ can be expressed as
equivalence of their annotated propositional formulas:

(AT (a)⇒ AT (b))∧ (AT (b)⇒ AT (a)) ⇔ AT (a)≡ AT (b)

For comparing annotations on lists of elements, we use the
short form:

AT (a)⇒ AT (b) ⇔
(AT (a1)⇒ AT (b1)) ∧ . . .∧ (AT (an)⇒ AT (bn))

C. Annotation Rules

Before we formally model the annotation checks as exten-
sions to FJ’s typing rules, we first informally introduce the
annotation rules that are to be checked. In general, we need to
check code fragments that reference other code fragments. The
code fragments – references and targets – must be annotated in
such a way that no reference is ever present in those program
variants in which the target is removed. Otherwise we get
dangling references that typically result in ill-typed programs.
We start with this informal list of annotation rules, then model
them formally in CFJ’s type system, and later prove them to
be complete. We identified checks for thirteen different pairs
of references and targets:

(L.1) A class L can only extend a class that is present.
(L.2) A field C f can only have a type C of a class L that is

present.
(K.1) A super constructor call (i) can only pass those param-

eters that are bound to constructor parameters and (ii)
must pass exactly the number of parameters expected
in the super constructor.

(K.2) A field assignment this.f=f in a constructor (i) can only
access present fields C f in the same class and (ii) only
assign values that are bound to constructor parameters.

(K.3) A constructor parameter C f can only have a type C of
a class L that is present.

(M.1) A method declaration C m(C x)... can only have a return
type C of a class L that is present.

(M.2) A method declaration overriding another method dec-
laration must have the same signature in all variants in
which both are present.

(M.3) A method declaration parameter C x can only have a
type C of a class L that is present.

(T.1) A variable x can only be bound to parameters C x of
its enclosing method.

(T.2) A field access t.f can only access fields C f that are
present in the enclosing class or its superclasses.

(T.3) A method invocation t.m(t) (i) can only invoke a method
M that is present and (ii) must pass exactly the number
of parameters C x as expected by this method.

(T.4) An object creation new C(t) (i) can create only objects
from classes L that are present and (ii) must pass exactly
the number of parameters C f as expected by the target’s
constructor.

(T.5) A cast (C)t can cast a term only to a class L that is
present.

Furthermore, there are some rules (which we refer to as
subtree rules [21], [22]) that deal with the removal process of
children from their parent element: if a class is removed also
all methods therein must be removed, if a method is removed
also its parameters and term must be removed. These rules
seem obvious and are actually enforced automatically in CIDE
by propagating colors from parent to child structures (e.g.,
if a class is ‘green’, then all its methods are automatically
‘green’ as well). However, when formalizing the calculus with
propositional formulas, we have to make these rules explicit:

(SL.1) A field is only present when the enclosing class is
present.

(SL.2) A method is only present when the enclosing class is
present.

(SK.1) A constructor parameter is only present when the
enclosing class is present.

(SK.2) A super constructor invocation parameter is only
present when the enclosing class is present.

(SK.3) A field assignment is only present when the enclosing
class is present.

(SM.1) A method parameter is only present when the enclos-
ing method is present.

(ST.1) A method invocation parameter is only present when
the enclosing method or term is present.

(ST.2) An object creation parameter is only present when
the enclosing method or term is present.

In the remainder of this section, we highlight changes
compared to the original FJ calculus for the annotation rules
(L.1–T.5) in light gray and changes for the subtree rules (SL.1–
ST.2) in darker gray.

D. Subtyping

The subtyping relation <: in CFJ is identical to FJ. Though
we could check the annotation rule (L.1) here, we decided to
postpone this check to FJ’s typing rules instead.

C <: C
C <: D D <: E

C <: E
class C extends D { . . . }

C <: D

E. Auxiliary functions

As in FJ, we need some auxiliary definitions for the typing
and evaluation rules. While we try to check most color
checks in the typing rules, there are cases in which already
the auxiliary functions – that are used in FJ to recursively
lookup fields or methods across the inheritance hierarchy –
need to consider annotations. We use A as a metavariable
for annotations (i.e., presence conditions in the form of a
propositional formula) and use • to denote an empty sequence.

1) Filter: First, we define a new function filter, that returns
only those code fragments from a given list that are present for
a given annotation A . Specifically, only those code fragments
are returned for which the annotation always evaluates to true
when the given annotation A evaluates to true.

filter(a,A) = {ai |A ⇒ AT (ai)}

Note, by integrating domain constraints into the result of AT
(see Sec. III-B), we can check the presence of a code fragment
simply with A ⇒ AT (a), and we do not need to check them
explicitly in every annotation check, e.g., A ⇒ AT (a)∧DC.

2) Field lookup: A field lookup determines all fields of a
class C including fields inherited from superclasses. In CFJ
this function fields is identical to FJ. Annotations are checked
later in the typing rules.

fields(Object) = •
CT (C) = class C extends D{C f;K M} fields(D) = D g

fields(C) = C f,D g

3) Method lookup: Similar to field lookups, a method
lookup function mtype finds methods with a given name m
in a class C or its superclasses. In contrast to fields, method
lookups need to be adapted because of the possibility of
method overriding (in contrast to overshadowing fields, which
is not allowed in FJ [17]). Thus, it could be possible, that
a method m in class C is not present for a given annotation
A , but another method in a superclass is present. Therefore,
we cannot check annotations only in the typing rules but
have to adapt the auxiliary function mtype. Compared to FJ,
we introduce an annotation parameter and select only those
methods in a class which are not filtered by the filter function
for the given annotation. These extensions are later needed for
rules (M.2) and (T.3).

CT (C) = class C extends D{C f;K M}
B m(B x){return t;} ∈ filter(M,A)

mtype(m,C,A) = B→B

CT (C) = class C extends D{C f;K M}
m is not defined in filter(M,A)

mtype(m,C,A) = mtype(m,D,A)

4) Overriding: Finally, we extend the auxiliary function
override that determines valid overriding for a given method
m with annotation A and type C→C and a superclass D.
Introducing a method in a class is valid (i) if there is no method
with the same name in a superclass, or (ii) if the method in
the superclass has exactly the same signature (same return type
and parameter types).

In the presence of annotations, checking valid overriding
is trickier than expected. First, the check whether a method
with the same name exists in a superclass must be extended to
check only for those methods that are present regarding a given
annotation A . This is automatically done using the modified
mtype function. Second, return types cannot be annotated,
thus their check is identical to FJ. However, checking the
parameter types is more difficult. We need to make sure that

the presence of parameters match in every program variant
in which overriding occurs (M.2). Therefore, to check that
parameters C in the given method and parameters D from the
overridden method are always present at the same time, we
use the expression A ⇒ (AT (C)≡ AT (D)).

mtype(m,D,A) = D→C0 implies
C = D and C0 = D0 and A ⇒ (AT (C)≡ AT (D))

override(m,D,C→C0,A)

F. Typing

After defining auxiliary functions, we can finally extend FJ’s
typing to incorporate annotations. We revisit each typing rule
in FJ and adapt it if necessary. For brevity, we discuss only
the changes compared to the original FJ typing rules.

1) T-VAR: Typing of variables is invariant to annotations,
i.e., the same as in FJ.

x : C ∈ Γ

Γ ` x : C

2) T-FIELD: For typing of field accesses, we require that
the target field declaration is present (T.2). Therefore, we look
up the current annotation of the field access term (AT (t0.fi) =
A) and combine the filter and fields functions to retrieve only
fields that are present in the target class. Furthermore, we
check that the class corresponding to the field’s type (Ci) is
present (L.2).

Γ ` t0 : C0 AT (t0.fi) = A filter(fields(C0),A) = C f
AT (Ci fi)⇒ AT (Ci)

Γ ` t0.fi : Ci

3) T-INVK: Method invocations are checked similarly for
the target method to be present (T.3i) using the filtering
of mtype. Additionally for rule (T.3ii), the annotation of
the invocation parameters must match the annotation of the
parameter declaration as described in Section III-E4 for the
override function (A⇒ (AT (t)≡ AT (D))). Finally, the subtree
rule (ST.1) is checked, i.e., parameters are at most present
when the term itself is present.

Γ ` t0 : C0 AT (t0.m(t)) = A mtype(m,C0,A) = D→C
Γ ` t : C C <: D A ⇒ (AT (t)≡ AT (D)) AT (t)⇒ A

Γ ` t0.m(t) : C

4) T-NEW: The extensions for typing object creation is
similar to method invocations. First, the target class must be
present (T.4i), which is checked explicitly with A ⇒ AT (C).
Additionally for rule (T.4ii), the provided parameters must
match the expected constructor parameters (A ⇒ (AT (t) ≡
AT (D f))), in which additionally filter is used to compare only
present fields. Finally, the subtree rule (ST.2) is checked.

AT (new C(t)) = A filter(fields(C),A) = D f
Γ ` t : C C <: D

A ⇒ AT (C) A ⇒ (AT (t)≡ AT (D f)) AT (t)⇒ A
Γ ` new C(t) : C

5) Casts (T-UCAST, T-DCAST): For casts, we need to
check that the target class is present (T.5) as shown below.
Stupid casts (needed for FJ’s small step semantics) can,
but do not need to be extended because they result in ill-
typed programs anyway, see [17]. This just leaves us with
straightforward extensions of T-UCAST and T-DCAST:

Γ ` t0 : D D <: C
AT ((C)t0)⇒ AT (C)

Γ ` (C)t0 : C

Γ ` t0 : D C <: D C 6= D
AT ((C)t0)⇒ AT (C)

Γ ` (C)t0 : C

6) Method Typing (M OK in C): For method typing, we
pass the annotation of the method to override to check rule
(M.2). Second, we check that the class corresponding to the
return type of the method (C0) is present (M.1). Third, we
check for each parameter, that the referenced class is present
(AT (C x)⇒ AT (C)) for rule (M.3). Fourth, we provide only
those parameters in the type context that are present (T.1),
therefore we filter the parameters C x and provide only the
present parameters D y to type-check t0. Finally, the subtree
rule (SM.1) is checked.

M = C0 m(C x) { return t0; } AT (M) = A AT (C x)⇒ A
filter(C x,A) = D y y : D, this : C ` t0 : E0 E0 <: C0

CT (C) = class C extends D { . . . } A ⇒ AT (C0)
override(m,D,C→C0,A) AT (C x)⇒ AT (C)

M OK in C

7) Class Typing (C OK): The class typing rule appears very
complex, because it covers several annotation rules. Each rule
by itself is simple though. To distinguish the occurrences of
g as constructor parameters, super invocation parameters, and
fields of the superclass, we also use g’ and g” but still assume
that all g’s are named the same (g = g’ = g”). The same for C f
that is used both for fields and constructor parameters (C f =
C f’).

First, rule (L.1) checks that the super class is always present
when the given class is present (A ⇒ AT (D)). Second, rule
(K.1) specifies that the super constructor call receives exactly
those parameters from the constructor’s parameter list that are
defined as fields in the super class (A⇒ (AT (D g)≡ AT (g’)≡
AT (D g”)), in which D g” is filtered by filter. Third, rule (K.2)
specifies that the other constructor parameters match the field
assignments (AT (C f) ≡ AT (this.f=f)) and that those match
the fields declared in the class (AT (this.f=f) ≡ AT (C f’)).4

Fourth, rule (K.3) specifies that all classes corresponding to
types used in the constructor’s parameter list must be present
(AT (C f)⇒ AT (C) and AT (D g)⇒ AT (D)). Finally, several
subtree rules for fields, methods and constructors (SL.1–2,

4The implication A ⇒ . . . is not needed for this rule because all elements
share the same annotateable parent element, the class declaration.

SK.1–3) are checked here.

K = C(D g, C f) { super(g’); this.f=f; } M OK in C
AT (C) = A filter(fields(D),A) = D g”

A ⇒ AT (D) AT (C f)≡ AT (this.f=f)≡ AT (C f’)
A ⇒ (AT (D g)≡ AT (g’)≡ AT (D g”))

AT (C f)⇒ AT (C) AT (D g)⇒ AT (D)
AT (C f’)⇒ A AT (M)⇒ A AT (D g)⇒ A

AT (C f)⇒ A AT (g’)⇒ A AT (this.f=f)⇒ A
class C extends D { C f’; K M } OK

8) SPL Typing (P OK): Finally, we can define what it means
for an SPL to be well-typed. As in FJ, a CFJ program (L, t,FM)
– i.e., an SPL – is well-typed if L OK and ` t : C (and it does
not contain stupid casts).

IV. VARIANT GENERATION

Programs written in CFJ are never directly evaluated. Thus,
there are no evaluation rules for CFJ, and it is not possible or
necessary to prove type-soundness. Instead with a valid feature
selection, a well-typed FJ program is generated – by removing
some annotated code fragments – that can be evaluated with
FJ’s evaluation rules (see [17]). For FJ, type-soundness has
already been proved [17]. The interesting property is, whether
every FJ program variant that is generated from a well-
typed CFJ SPL is well-typed. In the following, we define the
semantics of the generation process and analyze its properties.

A. Variant Generation Semantics

To generate a program variant, we define a function variant
that takes a CFJ program PCFJ and a feature selection v⊆ F
as input and returns an FJ program. The function variant
descends recursively through the SPL and checks all code
fragments that can be annotated. To them a function remove
is applied, that evaluates the annotations (variables in the
propositional formulas are assigned with truth values: true if
the feature is in v, false otherwise). Those code fragments,
for which the annotation evaluates to false are removed, the
remaining code fragments are stripped of their annotations.5

For brevity, we write variant(x,v) as [[x]] and remove(x,v)
as 〈〈x〉〉. The variant function is defined (syntax-driven) with
the following generation rules:

[[x]] = x (G.1)
[[t.f]] = [[t]].f (G.2)

[[t.m(t)]] = [[t]].m([[〈〈t〉〉]]) (G.3)
[[new C(t)]] = new C([[〈〈t〉〉]]) (G.4)

[[(C)t]] = (C)[[t]] (G.5)

[[C m(C x) {return t;}]] = C m(〈〈C x〉〉) {return [[t]];} (G.6)
[[(L, t,FM)]] = ([[〈〈L〉〉]], [[t]]) (G.7)

[[C(C f) {super(f); this.f=f;}]] =
C(〈〈C f〉〉) {super(〈〈f〉〉); 〈〈this.f=f;〉〉} (G.8)

5In CIDE, remove is implemented using transformations of the abstract
syntax tree, which ensures that separating tokens like commas between
parameters are placed correctly [22].

[[class C extends D { C f; K M }]] =
class C extends D { 〈〈C f〉〉; [[K]] [[〈〈M〉〉]] } (G.9)

B. Properties of Variant Generation

With the variant generation semantics, only optional code
fragments can be removed, so that every generated FJ program
is syntactically correct. The challenge remains to prove that
every generated program variant is well-typed.
THEOREM IV.1 (Variant generation preserves typing): Every
FJ program variant that is generated from a well-typed SPL
PCFJ with a valid feature selection v is well-typed.

PCFJ is well-typed v⊆ F valid(v)
variant(PCFJ ,v) is well-typed

Proof sketch: First, a well-typed CFJ program in that
every annotation evaluates to true, i.e., no code is removed,
is automatically a well-typed FJ program, because the syntax
for FJ and CFJ is the same and CFJ’s typing rules completely
cover FJ’s typing rules, they are only stricter.

For all further cases, where code fragments are removed,
we induct over the generation rules (G.1–9). For each case,
we analyze possible FJ typing rules that might be violated by
a removal. We show here only an excerpt:
CASE (G.1): No removal, typing not affected.
[. . .]
CASE (G.9): Field and method declarations can be removed
during generation. The subcases for typing rules T-VAR, T-
FIELD, T-NEW, T-UCAST, T-DCAST, M OK in C, and C OK
are not affected by a removed method declaration, i.e. none of
these rules checks for the presence of a specific method. Still,
a removed method can affect the FJ typing rule T-INVK. In
this subcase, if a method is removed, T-INVK can fail to type
a term t0.m(t) in case mtype does not find the now removed
method. However, this problem cannot occur in a program
generated from a well-typed CFJ program. Already in CFJ,
the T-INVK rule would fail because mtype called with the
terms annotation A = AT (t0.m(t)) only returns methods that
are present when the term itself is present. That is, method
declarations that are removed by the variant function from
a well-typed CFJ program cannot cause ill-typed program
variants.

Because the proof is straightforward but highly repetitive,
we skipped over the remaining cases for generation rules (G.2–
8) and for removing field declarations in (G.9). In each case, a
possible typing problem in the generated FJ program is already
covered by a stricter typing rule in CFJ.

Interestingly, the mechanics of this proof are very similar
to our discussion that lead to the annotations rules (L.1–T.5)
initially. This means, such a proof can be used constructively,
to extend the typing rules of another calculus, be it of some
FJ extensions like FGJ [17] or FJI [18]; or of a larger Java
calculus like Classic Java [13], Javalight [25], or Javas [12]; or
even of a type system for completely different programming
language.

V. LESSONS LEARNED

Formalizing CFJ was a helpful experience, even beyond just
theoretical insights, as we illustrate in this section.

When implementing annotation checks in CIDE, we imple-
mented them on top of the Java compiler (used from Eclipse’s
Java framework). That is, we assume that every SPL is a
well-typed Java program that additionally adheres to some
conditions on its annotations. The CFJ calculus assured us
that it is feasible to extend an existing type system with
annotation checks. However, it also shows that some lookup
functions required for these annotations checks need to be
adapted (mtype and overrides in CFJ). Previously in CIDE,
we checked a method invocation only against its direct target,
we did not search for overridden methods that might still be
present. Changing the lookup functions was an easy fix.

Furthermore, the small size of the calculus helped us
analyzing some conditions more clearly and thoroughly than
we did before in CIDE. First, it showed us possibilities to
integrate domain constraints in the type-checks, which we
did not earlier. Second, it revealed a subtle error. In earlier
work, we stated “Every parameter in a method call must have
exactly the same [directly declared] colors as the parameter
in the method declaration” [22]. The direct translation for T-
INVK would be (A⇒ AT (t))≡ (AT (M)⇒ AT (D)),6 which is
actually incorrect and must be A⇒ (AT (t)≡ AT (D)) instead,
as discussed in Section III-E4. The handy size of the calculus
allowed us to analyze these subtle differences in detail which
eventually revealed our mistake.

When sketching the annotation checking mechanism for
CIDE in earlier work, we were aware that we did not cover all
conditions. We assumed that we might need “more complex
logic, rule, or specification languages” [22] that are checked
in one big step to handle language semantics of abstract
methods or interfaces. To our surprise, all annotation checks in
CIDE including overridden methods (and including all checks
we found when discussing extensions of FJ with abstract
methods and interfaces) could be modeled with implications
on pairs (or triples) of code fragments. This reassures us of our
‘small checks’ approach with many small conditions instead
of feeding many collected, possibly complex conditions in an
SAT solver or theorem prover [16], [11], [30]. (We prefer this
small checks approach, because it is able to point out several
violations of the annotation rules at the same time, instead of
only a single error reconstructed from an SAT solver’s result.)

Finally, we found the proof of the type preservation the-
orem itself very interesting, as we found that we can use it
constructively. Though a complete proof for a language like
full Java or C# is too complex, the basic mechanisms of the
proof provide a framework how to derive annotation rules. This
helps us to improve CIDE’s annotation checks for Java and
to extend CIDE for new languages. It might even contribute
to our longstanding vision of providing a safe and language-
independent SPL tool.

6M represents the target method, A , as usual, represents the annotation of
the current method invocation term.

VI. OPEN PROBLEM: ALTERNATIVE FEATURES

In the formalization of CFJ, CIDE’s roots in decompos-
ing legacy applications are clearly visible. It is possible to
make code fragments optional and to express conditions like
either FeatureA or FeatureB must be selected using domain
constraints. However, it is difficult to have two alternative
implementations of the same method (e.g., two different buffer
strategies LFU and LRU in a database) while the rest of
the program expects either implementation to be present –
a functionality often used when constructing new SPLs.

Every CFJ class is a valid FJ class (is a valid Java class) and
thus cannot have two methods with the same name. Further in
CFJ and FJ, a method contains only a single term that cannot
be annotated. The only way to have two alternative imple-
mentations of a method is to (ab)use overriding and declare
one implementation in a subclass that is replaced by another
annotated implementation in the superclass. Depending on the
feature selection either the one or the other method can be
removed and mtype ensures that at least one implementation
is available in every variant in which this method is invoked.

There are different approaches how we could extend CFJ
to handle alternative features, apart from abusing method
overriding. First, we could allow multiple methods with the
same name inside one CFJ class and make sure that in every
generated variant at most one of these methods is present.
Second, following the concept of meta-expression annotations
(additionally to presence conditions) of Czarnecki and An-
tkiewicz [9], we could model alternative implementations as
external annotations that are also checked by the typing system
and evaluated during variant generation. Third, we could
allow multiple return statements in a method and evaluate
only the first one that is present (a solution we currently
use as workaround with full Java in CIDE). All of these
solutions have advantages and disadvantages (e.g., some make
it impossible to reuse/extend the Java compiler), but their
discussion and formalization would exceed the scope of the
paper, and will be addressed in future work.

VII. RELATED WORK

Our aim of proving type safety for an entire SPL instead
of only for a single program is in line with three approaches
from the community of generative programming.

First, an influential approach proposed by Huang et al.
ensures correct language semantics for Java code generated
by their tool SafeGen [16]. Though their tool is used for
metaprogramming in general, not as SPL technology, the basic
idea is similar to proving the variant generation process in CFJ
safe. Using first-order logics and theorem provers, they check
whether generators written in their confined meta-language
(with selection and iteration operators) produce well-typed
output for arbitrary Java input. However, checks cover only
some language semantics of Java, i.e., there is no guarantee
that the output is well-typed.

An approach to ensure language semantics of a program-
ming language in all variants of an SPL called safe com-
position was proposed by Thaker et al. [30]. They analyze

language semantics of Jak, a Java dialect for feature-oriented
programming [8]. To check SPL typing, they identify six con-
straints that need to be satisfied, which their program safegen
maps to propositional formulas and checks with an SAT solver.
One constraint deals with references to fields and methods
(roughly corresponding to T-FIELD and T-INVK), two deal
with abstract classes and interfaces (no correspondence in FJ),
and three deal with specific constructs of the Jak composition
mechanism (no correspondence in FJ). Their checks are not
claimed or even proved complete, and in fact – compared
to CFJ – checks that ensure the presence of types uses in
signatures are missing, e.g., (M.1), (M.3).

Closest to our work is an SPL tool for models called
fmp2rsm in which model elements are annotated with presence
conditions very similar to our formalization [9]. Czarnecki
and Pietroszek developed an approach to check language
semantics of models in this tool against OCL constraints for all
variants [11]. In MOF, language semantics for models – e.g.,
‘an association in UML class diagrams connects exactly two
elements’ – can be specified formally (and machine-readable)
using OCL constraints. Their tool now transforms the presence
conditions and OCL constraints into a propositional formula
that can be solved by an off-the-shelf SAT solver in one step.
Error messages are reconstructed from the SAT solver’s result.
Again, well-formedness can only be guaranteed against those
constraints that have been specified (machine-readable) with
OCL. For example, for UML those must be first inferred from
the informal text of the UML specification, similar to how Java
constraints must be inferred from the informal Java Language
Specification. The authors do not discuss completeness of their
inferred OCL constraints. Interestingly, their modeling tool
also includes meta-expression annotations that allow alterna-
tive values for one node, however meta-expressions are not
(yet) included in their well-formedness checks.

Our formalization is novel, because it shows how previous
approaches can be extended to guarantee well-typedness not
only for selected constraints but for all language semantics.
For implementation, we developed an extension to our existing
tool CIDE, but we could as well reuse the implementation from
safegen or fmp2rsm and encode the results of our calculus as
either conditions suitable for safegen or as OCL constraints
to be checked by fmp2rsm. All approaches share the same
overall goal of preventing errors in the complex task of SPL
development early on.

Finally, in a parallel line of research we developed an
algebra [4] and two calculi (incl. operational semantics and
type system) [2], [3] for feature composition. Instead of anno-
tating one integrated code base as in CIDE and fmp2rsm, this
work aims at composing different artifacts that are physically
separated in different files. Especially the calculus Feature
Featherweight Java (FFJ) [3] is close to our work, because
it is also based on FJ. FFJ extends syntax, typing, and eval-
uation rules for new language constructs; checks equivalent
to [30] and ours are directly integrated into the typing rules.
FFJ is proved type-sound using the standard preservation
and progress theorems, whereas CFJ generates FJ code and

only needs to prove the generation process. In some sense,
feature composition and our approach of feature annotations
are two sides of the same coin: one removes code from a
common base, the other merges already separated code. Both
approaches can be used to implement SPLs.

VIII. CONCLUSION

In this paper, we have formally discussed CFJ, a calculus for
an SPL based on Featherweight Java. With CFJ we can prove
that – if the SPL is well-typed – all possible program variants
are well-typed as well, without generating and compiling them
first. We have shown that CFJ can be modeled on top of FJ,
extending only the typing rules and auxiliary functions with
implications on pairs of annotations.

The formalization was motivated by our SPL tool CIDE for
Java and other languages. Though, CFJ (or FJ) covers only
a small excerpt from the Java specification, the formalization
confirmed us in our approach to check annotations on top of
an existing Java compiler and at the same time pointed out
some subtle errors. Finally, the proof that variant generation
preserves typing can also be used constructively, to design an
SPL type system for a new annotated language.

In future work, we intend to explore paths toward handling
alternative features and extensions of other code and non-code
languages and their interactions (inter-language semantics).
Our long term goal is to provide a language-independent
SPL tool that counteracts the inherent complexity of SPLs
by detecting possible errors as early as possible.

REFERENCES

[1] S. Apel, T. Leich, and G. Saake, “Aspectual feature modules,” IEEE
Trans. Softw. Eng., vol. 34, no. 2, pp. 162–180, 2008.

[2] S. Apel and D. Hutchins, “An overview of the gDeep calculus,” Depart-
ment of Informatics and Mathematics, University of Passau, Germany,
Tech. Rep. MIP-0712, 2007.

[3] S. Apel, C. Kästner, and C. Lengauer, “An overview of Feature Feath-
erweight Java,” Department of Informatics and Mathematics, University
of Passau, Germany, Tech. Rep. MIP-0802, Apr. 2008.

[4] S. Apel, C. Lengauer, B. Möller, and C. Kästner, “An algebra for features
and feature composition,” in Proceedings of the 12th International Con-
ference on Algebraic Methodology and Software Technology (AMAST),
ser. Lecture Notes in Computer Science, vol. 5140. Springer-Verlag,
Jul. 2008, pp. 36–50.

[5] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice.
Boston, MA, USA: Addison-Wesley, 1998.

[6] D. Batory, “Feature models, grammars, and propositional formulas.” in
Proc. Int’l Software Product Line Conference, Sep. 2005, pp. 7–20.

[7] D. Batory and B. J. Geraci, “Composition validation and subjectivity
in GenVoca generators,” IEEE Trans. Softw. Eng., vol. 23, no. 2, pp.
67–82, 1997.

[8] D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-wise
refinement,” IEEE Trans. Softw. Eng., vol. 30, no. 6, pp. 355–371, 2004.

[9] K. Czarnecki and M. Antkiewicz, “Mapping features to models: A
template approach based on superimposed variants,” in Proc. Int’l Conf.
Generative Programming and Component Engineering, 2005, pp. 422–
437.

[10] K. Czarnecki and U. Eisenecker, Generative programming: methods,
tools, and applications. ACM Press, 2000.

[11] K. Czarnecki and K. Pietroszek, “Verifying feature-based model tem-
plates against well-formedness OCL constraints,” in Proc. Int’l Conf.
Generative Programming and Component Engineering. New York,
NY, USA: ACM Press, 2006, pp. 211–220.

[12] S. Drossopoulou, T. Valkevych, and S. Eisenbach, “Java type soundness
revisited,” Department of Computing, Imperial College London, Tech.
Rep. 09, 2000.

[13] M. Flatt, S. Krishnamurthi, and M. Felleisen, “Classes and mixins,” in
Proc. Conf. Principles of Programming Languages. New York, NY,
USA: ACM, 1998, pp. 171–183.

[14] J. Gosling, B. Joy, G. Steele, and G. Bracha, JavaTMLanguage Specifi-
cation, 3rd ed., ser. The JavaTMSeries. Addison-Wesley Professional,
2005.

[15] M. L. Griss, “Implementing product-line features by composing as-
pects,” in Proc. Int’l Software Product Line Conference. Norwell, MA,
USA: Kluwer Academic Publishers, 2000, pp. 271–288.

[16] S. Huang, D. Zook, and Y. Smaragdakis, “Statically safe program
generation with SafeGen,” in Proc. Int’l Conf. Generative Programming
and Component Engineering. Springer, 2005, pp. 309–326.

[17] A. Igarashi, B. Pierce, and P. Wadler, “Featherweight Java: A minimal
core calculus for Java and GJ,” ACM Trans. Program. Lang. Syst.,
vol. 23, no. 3, pp. 396–450, 2001.

[18] A. Igarashi and B. C. Pierce, “On inner classes,” Inf. Comput., vol. 177,
no. 1, pp. 56–89, 2002.

[19] S. Jarzabek, P. Bassett, H. Zhang, and W. Zhang, “XVCL: XML-
based variant configuration language,” in Proc. Int’l Conf. on Software
Engineering. Los Alamitos, CA, USA: IEEE Computer Society, 2003,
pp. 810–811.

[20] K. Kang et al., “Feature-Oriented Domain Analysis (FODA) Feasibility
Study,” Software Engineering Institute, Tech. Rep. CMU/SEI-90-TR-21,
Nov. 1990.

[21] C. Kästner, S. Apel, and M. Kuhlemann, “Granularity in software
product lines,” in Proc. Int’l Conf. on Software Engineering. New
York, NY, USA: ACM, May 2008, pp. 311–320.

[22] C. Kästner, S. Apel, S. Trujillo, M. Kuhlemann, and D. Batory,
“Language-independent safe decomposition of legacy applications into
features,” School of Computer Science, University of Magdeburg, Ger-
many, Tech. Rep. 2, Mar. 2008.

[23] C. Krueger, “Easing the transition to software mass customization,” in
Proc. Int’l Workshop on Software Product-Family Eng. London, UK:
Springer-Verlag, 2002, pp. 282–293.

[24] J. Liu, D. Batory, and C. Lengauer, “Feature oriented refactoring of
legacy applications,” in Proc. Int’l Conf. on Software Engineering, 2006,
pp. 112–121.

[25] T. Nipkow and D. von Oheimb, “Java light is type-safe – definitely,” in
Proc. Conf. Principles of Programming Languages. New York, NY,
USA: ACM, 1998, pp. 161–170.

[26] N. Nystrom, S. Chong, and A. Myers, “Scalable extensibility via nested
inheritance,” in Proc. Conf. Object-Oriented Programming, Systems,
Languages and Applications. New York, NY, USA: ACM Press, 2004,
pp. 99–115.

[27] B. C. Pierce, Types and Programming Languages. Cambridge, MA,
USA: MIT Press, 2002.

[28] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Secaucus, NJ,
USA: Springer, 2005.

[29] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming. Addison-Wesley, 2002.

[30] S. Thaker, D. Batory, D. Kitchin, and W. Cook, “Safe composition
of product lines,” in Proc. Int’l Conf. Generative Programming and
Component Engineering. New York, NY, USA: ACM, 2007, pp. 95–
104.

