
Scalable Prediction of Non-functional Properties in
Software Product Lines

Norbert Siegmund, Marko Rosenmüller
University of Magdeburg, Germany

Christian Kästner, Paolo G. Giarrusso
Phillips University Marburg, Germany

Sven Apel, Sergiy S. Kolesnikov
University of Passau, Germany

Abstract—A software product line is a family of related
software products, typically, generated from a set of common
assets. Users can select features to derive a product that fulfills
their needs. Often, users expect a product to have specific non-
functional properties, such as a small footprint or a minimum
response time. Because a product line can contain millions of
products, it is usually not feasible to generate and measure non-
functional properties for each possible product of a product
line. Hence, we propose an approach to predict a product’s non-
functional properties, based on the product’s feature selection. To
this end, we generate and measure a small set of products, and
by comparing the measurements, we approximate each feature’s
non-functional properties. By aggregating the approximations
of selected features, we predict the product’s properties. Our
technique is independent of the implementation approach and
language. We show how already little domain knowledge can im-
prove predictions and discuss trade-offs regarding accuracy and
the required number of measurements. Although our approach is
in general applicable for quantifiable non-functional properties,
we evaluate it for the non-functional property footprint. With nine
case studies, we demonstrate that our approach usually predicts
the footprint with an accuracy of 98 % and an accuracy of over
99 % if feature interactions are known.

I. INTRODUCTION

A software product line (SPL) is a family of related software
products sharing a common set of assets [1]. Differences and
commonalities between products are typically described in
terms of features [2]. Users can specify a product as a selection
of features that satisfies their functional requirements [3]. With
many contemporary implementation mechanisms, it is possible
to automatically generate products based on feature selections.

In addition to functional requirements, users are also in-
terested in non-functional properties of a product, such as
performance, footprint, and reliability. Non-functional prop-
erties are especially important in the domain of embedded
systems [4], [5]. Reducing the resource consumption of a
software product can enable the use of cheaper hardware
devices or extend battery live, which can save a significant
amount of money in mass production. In a product-line setting,
a stakeholder may wish to enforce constraints on non-functional
properties (e.g., the footprint may not exceed the capacity of an
embedded device) or select the product that is best according to
some property (e.g., the fastest product). This, however, means
we have to measure many products, until we find a feature
combination that satisfies certain non-functional requirements.

To determining the feature set that optimizes a certain non-
functional property, we may have to measure all products.
Even small SPLs with less than hundred features can already
have millions of products, and industrial-size SPLs can contain

thousands of features [6], [7], [8]. So, generating products
for all feature selections is simply not feasible in practice.
Consequently, we investigate alternatives based on heuristics
that approximate non-functional properties without generating
and measuring all products.

We want to predict non-functional properties of an SPL’s
products, without actually generating a product, by aggregating
the non-functional properties of selected features. Hence, we
have to measure the non-functional properties per feature. To
this end, we compute a small but suitable set of products,
by analyzing the relationships between features documented
in a feature model [2]. We actually compile and measure
these products and approximate values per feature from deltas
between these products. That is, we try to predict what influence
the selection of a single feature will have on the non-functional
property of the final product.

Of course, the predictions will not be exact, because the
selection of one feature may influence non-functional properties
of other features (for example, a feature “global compiler
optimization” and will affect non-functional properties of most
other features). Additionally, there may be a complex mapping
from features to implementation units that can lead to false
approximations. To account for feature interaction, we have a
model in which we can define known feature interactions. We
measure the influence of these defined interactions to improve
the accuracy of our predictions.

We will show that for a product line with n features, already
n + 1 measurements can lead to acceptable predictions of
footprint, which can be improved further with more measure-
ments. Especially when using domain knowledge about feature
interactions, we can significantly improve accuracy with only
few additional measurements. Even, measuring n2 products,
which usually yields very accurate results in our experience,
still requires significant less effort than measuring all possible
products (which is 2n in the worst case).

We argue that our approach is general and can be applied
to different quantifiable non-functional properties. To evaluate
our approach, we choose a non-functional properties for which
a measurement is reproducible and is not under subject of
measurement bias. Hence, we use the non-functional property
footprint in our evaluation. We predict the footprint of products
in nine case studies. To demonstrate that our prediction model is
actually useful in practice, we cover very different aspects in a
broad spectrum of scenarios: we selected SPLs of different sizes
(2 500 to 13 million lines of code, 5 to 100 features), languages
(C, C++, and Java), varying implementation techniques, from

different domains (e.g., operating systems, database engines,
end-user applications), and from different developers (both aca-
demic and industrial). With a linear number of measurements
(which means, without considering feature interactions), our
footprint predictions have an accuracy of 99 % of the actual
measurements. However, if complex mappings between features
and implementation units exist, the approach is not sufficient.
By exploiting domain knowledge about feature interactions,
predictions improve to 99.7 % for all SPLs.

II. PROBLEM STATEMENT

Non-functional properties are diverse, and it is not obvious
how we can interpret and handle the measured values. We
concentrate on properties that can be quantified (i.e., that are
measurable). The theory of measurement provides different
levels (e.g., nominal, ordinal, interval, and ratio) of how
measured values can be interpreted [9]. In our approach, we
support interval and ratio-scale-based measures, because the
values of two measurements reflect differences of the according
property.1

To measure the vast majority of non-functional properties,
we have to actually generate and execute a product [10]. Our
idea is to identify the influence of an individual feature on the
product’s non-functional properties. However, it is not clear
which feature of a product contributes in which quantity to a
product’s properties. Even worse, non-functional properties of
a feature may depend on the presence of other features, such
that correlations between measured values and corresponding
features are ambiguous. Hence, determining an exact value of a
non-functional property per feature is not always possible [11].

Problems of approximating a feature’s non-functional prop-
erties are mostly caused by interactions between features. Two
types of feature combinations can cause a feature interaction:
(a) features A and B are present in a product and (b) features
A or B. For footprint this means, that we have to include
additional code in a product in the first case, whereas a set of
features share the same code in the second case.

To illustrate the problems of feature interactions, we use a
simple example that already exhibits measurement problems.
In Figure 1, we show the C++ implementation of a linked
list with two features: PrintList and PrintElement. Features
are implemented with conditional compilation. To measure a
non-functional property (e.g., footprint measured as the binary
size of the compiled product) per feature, we first measure each
individual feature. Hence, we measure the footprint of Lines
5 and 6 as well as Line 11 for feature PrintList. We would
not measure Lines 8 and 9, because these lines are compiled
only for a product that contains both features PrintList and
PrintElement. Hence, if we would predict the footprint of a
product that includes both features, the prediction would be
inaccurate. To predict the footprint correctly, we would have
to measure the influence of the feature interaction (Lines 8-9).

As another example, consider a set of features that use the
same resource. A shared resource may be an external library
or otherwise shared code. We can easily extend the list SPL

1For some non-functional properties, we may consider only ratio-scale-
based measures, because we may need to reason about approximations.

1 c l a s s List {
2 i n t numberOfElements;
3 Element* head;
4 # i f d e f PrintList
5 void printList() {
6 cout << numberOfElements;
7 # i f d e f PrintElement
8 i f (t h i s ->head != NULL)
9 printElement(t h i s ->head);

10 # e n d i f
11 }
12 # e n d i f
13 # i f d e f PrintElement
14 void printElement(Element* node){
15 node->print();
16 i f (node->hasNext())
17 t h i s ->printElement(node->getNext());}
18 # e n d i f
19 };

List SPL

PrintList PrintElement

Optional Feature

Fig. 1. C++ code of a list SPL with two features: PrintList and PrintElement.
We show the feature model in the upper right corner.

example to show the problems of shared resources. We may
use an external library to log the elements of a list instead
of printing them. To this end, we change the call to cout and
method print (in Lines 6 and 15 of Figure 1) to use the external
logging library. The library has a considerably larger binary
size than the features itself. When approximating a feature’s
non-functional properties, the predominant part of the footprint
would stem from the logging library. Because we measure the
size of the library for both features, we would predict the size
of a product with both features incorrect. The reason is that
both features share the same library, which is only included
once in the product, but was measured twice (once for each
feature).

III. NON-FUNCTIONAL PROPERTIES OF FEATURES

In this section, we present our approach to approximate the
influence of a feature (or a feature interaction) in a product
with respect to non-functional properties. First, we describe the
general concept of our approach. Second, we explain algorithms
necessary to extract the approximations of each feature’s non-
functional properties from a set of products.

We define P{F1,...,Fn} as the product P consisting of the
features F1,...,Fn, V(P) as the measured non-functional property
of product P, and VF as the approximation of the non-functional
property of feature F. Furthermore, we specify the index of a
product P to indicate for which feature the product is generated
and measured. For example, product PF1{F1} describes the
product to measure feature F1.

For simplicity, we omit mandatory features in P{..} and
only show the features important for the approximation. In
addition, parent(F1) is the direct parent feature of feature F1

in the feature model.

A. Process

The general idea of approximating a feature’s non-functional
properties is to measure the delta between two products that
differ only in the presence or absence of this feature. We

interpret the delta of two products as the approximation of the
added (or removed) feature’s non-functional properties.2

Let us assume we measure two products of the list SPL that
differ only in the presence of feature PrintList: Pbase{base} and
PPrintList{base,PrintList}.3 We can approximate the influence
of feature PrintList as the delta between products Pbase and
PPrintList : VPrintList = V(PPrintList) - V(Pbase).

In Figure 2, we illustrate the approach of approximating
a feature’s non-functional properties for SPLs that support
an automated product generation. Using a feature model,
we determine a small, but suitable set of products. In an
automated process, we generate and measure each product of
this set. Based on these measurements, we compute the delta
between two products and use this value as the approximation
for a feature. This means, to enable for each feature the
computation of the delta between two products, we would
need 2*n measurements altogether. By using the values of
previous measurements, we can reduce the number of required
measurements to n+1.

Furthermore, we allow stakeholders to define feature interac-
tions in the feature model [12]. Still in an automated process,
for each feature interaction we add a single product to the set of
products and measure its influence. That is, we scale the number
of measurements to improve the quality of the prediction. We
compute the actual influence of a feature interaction by using
the delta between non-functional properties of the actually
measured product and predicted non-functional properties of the
same product. For example, if we define a feature interaction I1
between features PrintList and PrintElement, we might predict
Vpredicted(PF1,F2) = 220 KB, whereas the actual footprint is
Vactual(PF1,F2) = 200 KB. Hence, we would assign -20 KB to
the interaction I1 as the approximation for footprint.

We developed the tool SPL Conquerer4 to implement the
process of determining and measuring products and to compute
a feature’s non-functional properties. The application of SPL
Conquerer provides two major benefits. First, SPL Conquerer
realizes an automated measurement and approximation process
that does not require any user interaction (e.g., the measurement
process can run over night without monitoring). Second, based
on the results of the automated measurement and approximation
process, SPL Conquerer can predict a product’s non-functional
properties almost instantly.

B. Measuring Feature Interactions
As we explained previously, feature interactions may affect

the approximation of a feature’s non-functional properties. That
is, a feature has different non-functional properties depending
on the selection of other features and thus can cause inaccurate
predictions. If feature interactions are not known or should
not be taken into account, a pure feature-wise measurement
approach is used. That is, we generate a product per feature
and interpret deltas between products as the approximations
of a feature’s non-functional property. Unfortunately, this is
sometimes not sufficient, for example, if there is a complex

2Such an approach requires interval or ratio scales [9].
3Feature base represents the code that is present in every product.
4http://fosd.de/SPLConqueror

F1

Fn-1 Fn

F1

Fn-1 Fn

I1

F1,…,Fn

F1,…,Fn

I1,…,Im

PF1,…,PFn,…,PIm V(PF1),…,V(PFn),…,V(PIm)

Features:

Define Feature Interactions

Compute Product Set Extract Approximations

VF1,…,VFn,…,VIm

Features:

Annotate

Approximations

a)

b) c)

Feature model

(optional)

Measure Products

...

...

Interactions:

Fig. 2. The process to compute approximations of non-functional properties
for features and feature interactions.

mapping between features and implementation units. In this
case, a feature’s approximation would take into account non-
functional properties of several implementation units that
however are also related to other features. Hence, a single
approximation for a feature is not sufficient.

Fortunately, it is often an easy task to identify such feature in-
teractions. We can use three different sources to identify feature
interactions by: (a) using the mapping between domain features
and implementation units, (b) analyzing the source code (e.g.,
searching for nested #ifdefs as a common indication of simple
implementation interactions), and (c) using expert knowledge.
In our evaluation (cf. Section IV), we use our knowledge of
the mapping from domain features to implementation units
for the Violet SPL, we analyze the source code of Berkeley
DB, Prevayler, and SQLite, and we ask a domain expert for
the Linux kernel to identify feature interactions. In the case
no domain knowledge is available, it can be worthwhile to
simply assume the existence of a feature interaction between
each pair of features in an SPL. A similar approach was used
to generate test cases for SPLs [13]. In the following, we give
a short description about the different approaches including
their complexity with respect to the number of measurements.

Feature-wise measurement: We generate a product for
each feature. The complexity is O(n), in which n is the number
of features of an SPL. This approach should be used for
very large SPLs and is most accurate if there is a one-to-
one mapping between features and implementation units as in
feature-oriented programming [14]. Still, in other cases, the
results of the measurement are useful if we require only rough
predictions for a product’s non-functional properties (e.g., if a
stakeholder is only interested in a qualitative comparison of
non-functional properties from a set of desired products).

Interaction-wise measurement: In this approach, we
measure not only each feature in the feature model, but also all
known feature interactions. SPL Conqueror creates a product

that contains the features that belong to an interaction. This way,
we have to measure O(n+k) products, in which n is the number
of features and k is the number of defined interactions. If k=0,
the interaction-wise approach is identical to the feature-wise
approach. Measuring all interactions improves the accuracy
in the prediction of a product’s non-functional properties.
Especially, when an SPL contains a large number of interactions
and domain knowledge helps to identify many of them, this
approach results in a solid prediction base.

Pair-wise measurement: To automatically detect all first-
order feature interactions (i.e., an interaction in which exactly
two features participate), we use a pair-wise measurement
approach. That is, we measure ((n ∗ (n− 1))/2) + n products.
This results in a substantially increased product set to measure
compared to the feature-wise measurement. Furthermore, there
are also n-wise measurements possible to measure feature
interactions in which exactly n features participate (n-th order
feature interaction). However, they usually require a large
number of additional measurements.

C. Computing the Product Set for Measurement

Our approach uses a specific set of measured products from
which we can extract an approximation for each feature. An
important goal is to minimize the number of products in the
product set. That is, we aim at measuring only a linear number
of products with respect to the number of features in an SPL. To
reach this goal, we utilize the hierarchical structure of feature
models that allows us to reuse products already defined for the
parent feature. Hence, we need only n+1 products instead of
2*n products. In detail, every feature model has a root feature
(which can be empty) and each feature in a feature model
has either a parent feature or the parent is the root feature.
Beginning with the root feature, we traverse the feature tree
and add for each feature a single product to the product set
that contains the current feature as well as the feature set of
the parent’s product. Hence, each newly determined product
can use the previously defined product to compute the delta
in its non-functional properties, which is the approximation of
the non-functional properties of the differing feature.

Unfortunately, there are also constraints that may make a
measurement for the given feature ambiguous, because we
have to add sometimes multiple features at the same time due
to constraints. Hence, the constraints in a feature model affect
the product set as we will explain in Section III-D.

Beside constraints of a feature model, there are two other
factors that affect the product set. First, to measure the influence
of a feature interaction, we have to measure a product that
contains the features that cause the interaction. To this end, we
add an additional product to the product set with all features
part of the interaction relationship. Second, we need an initial
product (or feature set) to have a starting point – an initial
value – from which we can compute the deltas of non-functional
properties. This initial feature set is necessary if the individual
selection of the root feature results not in a valid product. Then,
we handle the set of features in the initial product as the ”root
feature” and traverse the feature tree starting from the features
of the initial feature set. Hence, from this initial value, we add

P1:{Base, AbstractElement, ElementA, AbstractIterator,
ForwardIterator} (Standard Configuration)

P2:{P1 \ {ElementA} ElementB}}
P3:{P1 \ {ElementA} ElementC}}
P4:{P1 \ {ForwardIterator} {BackwardIterator}}
P5:{P1 {AbstractSort, BubbleSort}}
P6:{P1 {AbstractSort, MergeSort}}
P7:{P1 {AbstractSort, InsertionSort}}
P8:{P1 {AbstractSort, QuickSort}}
P9:{P1 {print}}
P10:{P1 {AbstractSort, BubbleSort, Measurement, TCP_IP,
Performance}}
P11:{P1 {AbstractSort, BubbleSort, Measurement, TCP_IP,
MemorySize}}

Determined set of configurationsFeature Model

Mandatory
Optional
XOR‐Group
OR‐Group

Legend:

Fig. 3. Computing the set of products to measure all features.

or subtract the approximations of each feature in a product’s
feature set to predict non-functional properties of the product.

In Figure 3, we show an example of the computation of the
product set of an extended example of a list SPL. On the left
side, we show a feature model of a linked list SPL.5 In this
example, we define the initial feature set as product P1{Base,
AbstractElement, ElementA, AbstractIterator, ForwardIterator}.
This product represents the initial feature set with the minimal
number of features from which we add further features. For
example, we add feature print to the initial feature set in
P9{SC,print} to measure the approximation of this feature.
As you can see, there are less products than features. This is
caused by the fact that we cannot create individual products for
mandatory features (e.g., features Measurement and TCP IP
must always be selected in combination).

D. Approximating Non-functional Properties per Feature

In the following, we describe our approach to compute
approximations of a feature’s non-functional properties for the
most common relationships between features [2], [3]. In Figure
4, we present on the left side a relationship of a feature model
(e.g., the mandatory relationship at the top). In the middle,
we show a graphical representation of the product that has
to be measured. We distinguish products with different colors
and hatchings. Finally, on the right side, we state the feature
selection of the corresponding products. Next, we define the
equations how we extract approximations of non-functional
properties for each feature.

(1) Mandatory: A mandatory relationship enforces that
whenever the parent feature is selected (feature A in Figure
4), we must also select its child feature (feature B). As a
consequence, we cannot measure feature B without A and
measure the actual value of feature B always together with
feature A. Hence, we decided to set the value of feature B to
zero and the value of feature A to the sum of both features.

5SPL Conqueror visualizes mandatory features with black names, optional
with green names, alternative features with red names, and OR-group features
with light blue names.

Mandatory

Optional

OR

Alternative

A

B

A

B

A

B C

B C

A

VB = 0

VA= V(PA{A,B})
- V(Pparent(A){parent(A)}P1 = PA{A,B}

P1 = PA{A}

P2 = PB{A,B}

P 1 = PB{A,B}

P2 = PC{A,C}

P 1 = PB{A,B}

P2 = PC{A,C}

P3 = PA{A,B,C}

VB = V(PB{A,B}) - V(PA{A})

VA= V(PA{A}) - V(Pparent(A){parent(A)}

VB = V(PB{A,B}) - V(PA{A})

VA= V(PA{A}) - V(Pparent(A){parent(A)})

VC = V(PC{A,C}) - V(PA{A})

VB = V(PA{A,B,C}) - V(PC{A,C})

VA= V(PB{A,B})
– VB - V(Pparent(A){parent(A)})

VC = V(PA{A,B,C}) - V(PB{A,B})

Feature Model Constraint Measured Products Approximating Feature
Values

A B

Requires P1 = PB{B}

P 2 = PA{A,B}

VA= V(PA{A,B})
- V(PB{B}) - V(Pparent(A){parent(A)})

 + V(PF1+..+VFm{F1,…,Fn})

a)

b)

c)

d)

e)

V(PA{A}) = Min(V(PB{A,B}),V(PC{A,C}))

Fig. 4. Extracting feature’s non-functional properties from automatically
generated products depending on feature model constraints.

Thus, when a stakeholder selects feature A during product
configuration, we show already the aggregated value of feature
A and B. This way, it is easier to see the implications of a
feature selection for a stakeholder, because she usually selects
features starting from the root node. We compute the value for
a mandatory relationship as follows (Figure 4a)):

VA = V (PA{A, B})− V (Pparent(A){parent(A)})
VB = 0

It is important to note that V(Pparent(A){parent(A)}) is always
available, because we begin with the initial feature set and
an initial value and go with each step deeper into the feature
model hierarchy. Hence, either we have already measured
V(Pparent(A)(parent(A))) or Pparent(A)(parent(A)) is the initial
product.

(2) Optional: In an optional relationship, it is not required
to select the child feature. Hence, we generate a product
containing only the parent feature of the relationship: PA{A}.6
Additionally, we need a second product with feature B:
PB{A,B}. In this case, the computation of VA and VB is
easy:

VA = V (PA{A})− V (Pparent(A){parent(A)})
VB = V (PB{A, B})− V (PA{A})

(3) Alternative: An alternative relationship is more dif-
ficult, because we cannot select the parent feature of the
relationship alone, but measure its value always in combination
with different child features (e.g, PB{A,B} and PC{A,C}).
As a design decision, we set the approximation for feature

6Of course, we have to include all necessary features to derive a valid
product, e.g., all parent features.

A depending on the non-functional property either as the
minimum or as the maximum value of all measured products
of the alternative relationship. Additionally, we set the feature
in the alternative relationship with the minimal or maximal
measured value to zero. It depends on the property and the
initial value if we either subtract (using the maximum) or add
(using the minimum) a feature’s non-functional properties. The
reason behind this decision is that we cannot determine the
value of the parent feature and would have to set this value
to zero. We argue that users can make earlier decisions of
selecting the parent of an alternative group if they retrieve
the information that at least a certain value has to be added
instead of zero. However, our design decision is not necessarily
required and does not affect other computations. In Figure 4c,
we can see that we require a generated product per feature in
the alternative relationship. In our example, we require two
products PB{A,B} and PC{A,C}. To compute the value of
feature A, as always, we need the measured product of the
parent of feature A: Pparent(A){parent(A)}. Then, we use the
following equations:

V (P{A}) = Min(V (PB{A, B}), V (PC{A, C}))
VA = V (PA{A})− V (Pparent(A){parent(A)})
VB = V (PB{A, B})− V (PA{A})
VC = V (PC{A, C})− V (PA{A})

(4) OR: In contrast to the alternative relationship, we can
select multiple child features. This raises the problem that we
need to determine the influence of the parent feature of the
relationship. If we do not compute VA, we would aggregate
the approximation of feature A multiple times for a product’s
prediction that contains multiple child features. Hence, we
have to determine the approximation of feature A in an OR
relationship rather than using the minimal measured product.
To retrieve the value of feature A, we need an additional
measurement for the OR relationship. In this measurement, we
create a product that contains two features of the OR group
(PA{A,B,C} in Figure 4d). With this new measurement, we
are able to extract the value of feature A using the following
equations:

VA = V (PB{A, B})− VB − V (Pparent(A){parent(A)})
VB = V (PA{A, B, C})− V (PC{A, C})
VC = V (PA{A, B, C})− V (PB{A, B})

(5) Requires: Finally, we also consider cross-tree con-
straints in the feature model. The excludes constraint does not
change the computation of a feature’s non-functional properties,
because it only restricts the number of features and we already
try to measure a product with minimal number of features. In
contrast, the requires constraint prohibits the measurement of a
single feature. Our approach is to measure first the product that
includes the target of the requires constraint PB{B} (product
1 in Figure 4e)). Then, we measure the product that includes
both features PA{A,B}. The problem of a cross-tree constraint
is that we can have an overlapping set of features. That is,
we may have features in both products PB{B} and PA{A,B}
simultaneously. Thus, we must identify the overlapping features
first and retrieve their values for the product containing these

features: PF1 ,...,Fn
{F1, ..., Fn} in which F1, ..., Fn represents

all overlapping features. With the following equation, we
determine the approximation of feature A:

VA = V (PA{A, B})
− V (PB{B})− V (Pparent(A){parent(A)})
+ V (PF1 ,...,Fn {F1, ..., Fn})

We are aware of the fact that there might be cycles in
a feature model such that each feature of the cycle cannot
be measured without any other feature of the cycle. Hence,
approximations of individual features in a cycle cannot be
computed. However, this is not necessary at all, because in
each product either all features of a cycle are present or
none. Therefore, the solution in this case is the definition
of a feature interaction that contains the approximation of all
features in a cycle. The creation of such feature interactions
can be automated, which we did for the Violet product line
(see Section IV).

IV. EVALUATION

Since our approach only predicts non-functional properties
and cannot provide precise results, we evaluate the accuracy of
our approximations with a series of case studies. We developed
the tool SPL Conquerer to automate measurement, computation
of the product set, and approximation of a feature’s non-
functional properties. We demonstrate that our predictions are
sufficiently accurate for many real-world scenarios, in which
we want to constrain the configuration space or select a nearly-
optimal product regarding some non-functional property. For
brevity, we show only a selection of our evaluation in the paper.
We refer the interested reader to our website for more and
detailed information.7

We selected nine existing SPLs with very different charac-
teristics to cover a broad spectrum of scenarios. In Table I,
we give an overview of our case studies: We selected SPLs
of different sizes (2 500 to 13 million lines of code, 5 to
100 features), implemented with different languages (C, C++,
and Java) and different variability mechanisms (conditional
compilation and feature-oriented programming), from different
domains (e.g., operating systems, database engines, end-user
applications), and from different developers (both academic
and industrial). From Linux, due to the huge configuration
space, we considered only a subset of 25 features, selected
as representative by a domain expert.8 Among the 25 features
were some features that we knew would change the footprint
(as the evaluated non-functional property) of other features
(e.g., OPTIMIZE INLINING and CC OTPIMIZE FOR SIZE
both apply global optimizations). Although very different SPLs
are used, the main technical commonality is that, in all case

7http://fosd.de/SPLConqueror
8The domain expert selected the following features, which cover

both modular features, such as drivers, as well as crosscutting features
implemented using conditional compilation: DEBUG BUGVERBOSE,
INLINE SPIN LOCK, OPTIMIZE INLINING, CC OPTIMIZE FOR SIZE,
MODULE UNLOAD, FRAME POINTER, MODULE SRCVERSION, DNOTIFY,
INOTIFY USER, FIRMWARE IN KERNEL, SND VERBOSE PROCFS,
POWER SUPPLY DEBUG, PCNET32, NF CONNTRACK IPV6, NLS ISO8859 15,
NO HZ, NET POLL CONTROLLER, PRINTK TIME, SATA NV, SC520 WDT,
KPROBES SANITY TEST, I2C DEBUG ALGO, CHR DEV SCH

studies, we can automatically generate and compile products
for a given feature selection.

As an evaluation strategy, we measure a set of products from
each SPL to approximate non-functional properties per feature
(using each the feature-wise, the interaction-wise, and the pair-
wise approach) and compare the resulting predictions with the
actual properties of all products. Exceptions are Violet, SQLite,
and Linux kernel, because the measurement of all products is
not feasible in reasonable time. We choose to use 100 random
products instead.9 Since our approach is customer-centered, we
calculate a fault rate of our prediction as the relative difference
between predicted and actual property: |actual−predicted|

actual . To
set the fault rate into perspective, we provide also the highest
and lowest measured value in Table I.10

A. Accuracy of Predicting Footprint

We evaluate the accuracy of our approach by means of
the non-functional property footprint (the binary size of the
compiled product). We selected footprint for several reasons:

• Although it may appear trivial, footprint is actually quite
difficult to predict. As for performance, feature interactions
can have an immense effect: Crosscutting features can
significantly influence the footprint of many other features.
Interactions due to shared libraries, nested #ifdefs (code is
only included when two or more features are selected), or
possible compiler optimizations make footprint difficult
to predict.

• We can measure footprint quickly and reliably, which is
important for a large-scale evaluation with multiple case
studies as ours. We can easily reproduce values, and we
exclude noise and confounding influences, such as system
load, which easily can bias benchmarks. In addition, since
we need to automate a high number of measures (not
only for products used to approximate values per feature,
which a normal user of our approach would do, but, in
addition, also for reference products to compare predicted
and actual size), it comes in handy that measuring footprint
is quick.

• Finally, since we are not domain experts for all SPLs, it
is difficult to evaluate the influence of domain knowledge
to recognize possible interactions. For footprint, many
implementation approaches give us a chance of using
heuristics to detect possible interactions (e.g., by searching
for nested #ifdefs); hence, we can provide still insight into
the benefits of the interaction-wise approach on different
SPLs.

9We created the random products as follows: For each feature, we randomly
decide whether to include or not include it. If the resulting feature selection
is not valid according to the feature model, we start over.

10Note, the fault rate requires careful interpretation, and a base product
or a feature with overproportional influence on the property may distort the
figure. We cannot provide a relative fault rate corresponding to some base or
minimal product, because it is not clear what the base or minimal product
is (we would need to measure all products in the first place). However, for
comparison we provide the highest and lowest measured property in each SPL.

Product size in KB
Product line Domain Origin Language Implementation technique Features Products LOC Min∗ Max∗

LinkedList Data structures Academic Java Composition (Jak) 18 492 2 595 4.4 10.5
Prevayler Database Industrial Java Conditional compilation 5 24 4 030 87 169
ZipMe Compression Academic Java Conditional compilation 8 104 4 874 79 99
PKJab Instant messenger Academic Java Composition (FeatureHouse) 11 72 5 016 39 161
SensorNetwork Simulation Academic C++ Composition (FeatureC++) 26 3240 7 303 19 875
Violet UML editor Academic Java Composition (FeatureHouse) 100 ca. 1020 19 379 6.3 185
Berkeley DB Database Industrial C Conditional compilation 8 256 209 682 1 800 2 740
SQLite Database Industrial C Conditional compilation 85 ca. 1023 305 191 166 200
Linux kernel+ Operating system Industrial C Conditional compilation 25 ca. 33 000 000 13 005 842 11 245 13 829
∗ Minimal and maximal size of large SPLs may not be exact, because we cannot measure all products. We list the smallest and largest measured value.

+ We use only subset 25 features of the Linux kernel selected by a domain expert.

TABLE I
OVERVIEW OF THE SPLS USED IN OUR EVALUATION.

#Measurements (in percent∗)
Product line Feature-wise Interact.-wise Pair-wise

LinkedList 11 (2.2) 13 (2.6) 88 (17.8)
Prevayler 5 (6) 7 (29) 17 (70)
ZipMe 8 (8) 10 (10) 21 (20)
PKJab 8 (11) 8 (11) 36 (50)
SensorNetwork 26 (1) 34 (1) 252 (8)
Violet 80 (0) 2115 (0) 5229 (0)
Berkeley DB 9 (4) 15 (6) 33 (13)
SQLite 85 (0) 146 (0) 3306 (0)
Linux kernel 25 (0) 207 (0) 326 (0)

∗ Number of measurements in relation to the number of products in percent
(cf. I).

TABLE II
NUMBER OF MEASUREMENTS FOR OUR DIFFERENT APPROACHES.

In Figure 5, we summarize the results of our footprint
measurements and predictions for all SPLs using box plots.11 In
Figure 6, we additionally plot predicted values against measured
results for one of our case studies, which illustrates the accuracy
visually (for a perfect prediction, all dots would lie on the
diagonal line).

Our predictions are usually accurate even for the feature-
wise approach. Predictions based on more measurements are
even better. However, we identified an exception of this rule
for the Violet SPL, which we discuss next. Nevertheless, even
predictions based on feature-wise measurements usually only
exhibit a fault rate of a few percent, which can be reduced
to under one percent with more measurements (by defining
feature interactions). Moreover, we show in Table II the number
of measurements we did to infer approximations of a feature’s
footprint. In brackets, we indicate the percentage of the number
of measurements compared to the number of all possible
products. We only need to measure a small fragment of all
products.

Let us have a closer look at three case studies, Berkeley
DB, Violet, and the Linux kernel, because their results show
interesting points for further investigations. Berkeley DB is a an
SPL that makes exhaustive use of nested #ifdefs. This means,

11Fig. 5 uses a box plot to describe data [15]. It plots the median as thick
line and the quartiles as thin line, so that 50 % of all measurements are inside
the box. Whiskers describe the remaining 50 % measurements.

Linux Kernel_PW
Linux Kernel_IW

Linux Kernel_FW
SQLite_PW
SQLite_IW

SQLite_FW
Berkeley DB_PW
Berkeley DB_IW

Berkeley DB_FW
Violet_PW
Violet_IW

Violet_FW
Sens.Net._PW
Sens.Net._IW

Sens.Net._FW
PKJab_PW
PKJab_IW

PKJab_FW
ZipMe_PW
ZipMe_IW

ZipMe_FW
Prevayler_PW
Prevayler_IW

Prevayler_FW
LinkedList_PW
LinkedList_IW

LinkedList_FW

−8 −6 −4 −2 0 2 4 6

0.9
0.2
0.7
0.1

0
0

0.6
0.2
0.3

0
0
0

0.5
0.3
0.2

186.7
0.1

722.5
1.9
0.5

0
0
0

0.1
0.4
0.4
0.3

±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±

0.9
0.3
0.8
0.1
0
0
0.6
0.3
0.5
0
0
0
1
0.5
0.6
34.4
0
362
2.2
0.8
0
0.1
0
0
0.5
0.3
0.4

Fig. 5. Fault-rates in percent of all SPLs using the different approaches
including the absolute average and standard deviation. To improve readability,
we omit the plot for Violet PW. FW: Feature-wise; IW: Interaction-wise; PW:
Pair-wise

it is often the case that a certain feature combination requires
additional code which increases the footprint. In Figure 6, we
show the results of our different approaches. Although we
only measured 9 products of Berkeley DB for the feature-wise
approach, we have an average fault-rate of about 1.9 % for all
256 products. We often predict a too low footprint, because
we did not measure those feature interactions that include
additional source code in a product (nested #ifdef). Hence, for
larger products containing an increasing number of features
that depend on each other, the fault-rate increases.

To improve the quality of the measurement, we analyzed the
source code of Berkeley DB to identify such (syntactic) feature
interactions. With a self-written tool, we identified 6 cases of
nested #ifdefs. These #ifdefs cause feature interactions, for
which we measured 6 additional products. Considering these
known feature interactions the average fault-rate is reduced to

Feature-Wise Interaction-Wise Pair-Wise

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1800 2000 2200 2400 2600

18
00

20
00

22
00

24
00

26
00

actual footprint (in KB)

es
tim

at
ed

 fo
ot

pr
in

t (
in

 K
B

)
Avg. Dev.: 1.9 %
Max. Dev.: 7 %

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1800 2000 2200 2400 2600

18
00

20
00

22
00

24
00

26
00

actual footprint (in KB)
es

tim
at

ed
 fo

ot
pr

in
t (

in
 K

B
)

Avg. Dev.: 0.5 %
Max. Dev.: 2.1 %

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1800 2000 2200 2400 2600

18
00

20
00

22
00

24
00

26
00

actual footprint (in KB)

es
tim

at
ed

 fo
ot

pr
in

t (
in

 K
B

)

Avg. Dev.: 0 %
Max. Dev.: 0.1 %

Fig. 6. Measured and predicted footprint in KB of Berkeley DB (compiled as static link library) using different approaches.

0.5 %. Thus, by measuring only 15 products of Berkeley DB,
we can almost predict the footprint of all 256 products with a
very high accuracy. Finally, we applied the pair-wise approach
to Berkeley DB and measured 37 additional products. This
eliminated faults almost entirely (maximum fault-rate of 0.1%)
as visible in Figure 6.

With Violet, we identified the worst fault rates (cf. Figure 5).
The reason is the complex mapping between some features
and implementation units. That is, an individual feature maps
to multiple code units and a single code unit may be required
by multiple features. Hence, when measuring such a feature,
the corresponding product contains several implementation
units that are also present when measuring another feature’s
product. Therefore, predicting the footprint of a product
that includes multiple features with an overlapping set of
implementation units is inaccurate, because we consider the
footprint of the implementation units multiple time. The pair-
wise approach is even worse, because more than two features
map to the same code. Furthermore, we did not use thresholds
(e.g., limiting the size of a feature interaction to the sum of
the size of the participating features) to limit the influence
of interactions (as we would do for practical use) to gain
insights in the nature of feature interactions. Hence, when
predicting a product containing three features, we aggregate
three times the approximation of pair-wise feature interactions,
though only two times would be correct. If more features
interact, the inaccuracy increases, which is an interesting
insight about feature interactions. Fortunately, the mapping that
causes the problems can easily be analyzed to automatically
define appropriate feature interactions. Hence, with additional
measurements, we can easily improve the accuracy to over
99 % (see Figure 5 Violet IW).

Linux is another interesting case. Among the 25 features
selected by a domain expert were some features that we
knew would change the size of other features (e.g., OPTI-
MIZE INLINING and CC OTPIMIZE FOR SIZE both apply
global optimizations). Hence, we expected large fault-rates
regarding the 100 randomly generated products. We were
surprised that we still achieved a precise prediction even

with the feature-wise approach, partially, because the features
had a weaker effect than expected. We slightly improved the
accuracy of the interaction-wise approach, because we defined
feature interactions between more than two features (i.e., we
define an interaction between every feature and the features
OPTIMIZE INLINING and CC OTPIMIZE FOR SIZE).

In general, our evaluation shows that, at least for footprint,
our prediction model provides good approximations of the
actual non-functional property. We discuss next how this could
be used in practice, and how many measurements one should
perform in the following.

B. Best Number of Measurements

The results have shown that the feature-wise approach is
a good initial approximation of a product’s non-functional
properties. However, if there is domain knowledge available,
we suggest to always use it as it can significantly improve
accuracy with only few additional measurements. Additionally,
complex mappings or unknown feature interactions can cause
large fault-rates, which would require to always include the
mapping in the feature model in terms of feature interactions.

If domain knowledge is not available, it is difficult to
decide whether investment in more measurements is worth.
For some non-functional properties, such as footprint, it might
be feasible to extract information about interactions from the
source code. Sometimes other sources of domain knowledge
might be available.

At this point, the measurements are often already sufficiently
accurate to use them during product derivation, for example,
to rule out products that obviously do not fulfill the required
constraints or to determine a set of possible candidates for the
optimal product.

Finally, the pair-wise approach achieves often the highest
accuracy, but increases the effort for measurements significantly
(O(n2)). We only recommend it, if there is either no domain
knowledge available or to combine it with the interaction-wise
approach when the number of features is acceptably small.

We illustrate our observations in Figure 7. In general, the
accuracy increases (i.e., the fault-rate decreases) with additional

measurements, but a stakeholder must be aware of the fact
that too many measurements render the approach infeasible.
For example, if we want to measure all 8.000 features of the
Linux kernel [7] (we only considered 25 in our evaluation)
with the pair-wise approach, we would need about 64 million
measurements (which, extrapolating from our experiments,
would take roughly 2 years to measure on a cluster of 1.000
computers). In contrast, the feature-wise approach requires the
measurement of only about 8.000 products (which could be
realistically done in one day using a cluster of 100 computers).
For our approach, balancing between desired accuracy and
investment in measurements is essential.

Feat.‐Wise Dep.‐Wise Pair‐Wise

of Measurements

Fault rate

0
n

n = number of features
k = number of manual dependencies

n2n + k

Fig. 7. Observed relation between number of measurements and fault rate of
predictions.

C. Threats to Validity

There are some threats to internal and external validity.
Regarding internal validity, we need to point out that, for SPLs
with many features, we only sampled 100 products to compare
prediction and actual property, because we cannot possibly
generate and measure all products in reasonable time. We are
aware of that this evaluation leaves room for outliers, but we
did not find any outliers in our data by sampling.

Regarding external validity, although we use a large variety
of different SPLs, we are aware of that the results of our
evaluations are not automatically transferable to all other SPLs.
Our used SPLs have feature models with a typical structure and
number of constraints (according to the criteria in [16]). We
did not evaluate SPLs with an unusual possibly degenerated
feature model, which might influence the computation of the
product set. Thus, we cannot generalize our results to such
product lines.

Finally, of course we cannot generalize our evaluation to non-
functional properties other than footprint. However, we argue
that – similar to performance and many other non-functional –
footprint is subject to many internal and external influences.
These influences have a crucial impact on the applicability of
our approach, which we could handle with footprint. In this
paper, we want to convey that the approach of approximating
non-functional properties per features is realistic at all.

V. RELATED WORK

Many product-derivation approaches for SPLs have been
proposed in the past [17], [18], [19], [20], [21]. However,
they do not allow a user to specify non-functional constraints
or to derive a product with desired non-functional properties.
Research in this area focuses on reducing the complexity of

the configuration process and supporting the user with tools
during feature selection. Nevertheless, some approaches also
allow a user to optimize the feature selection for a specific
non-functional property. Benavides et al. presented a technique
based on CSP solvers to find an optimal product [22], [23].
The solver evaluates values attached to features in the feature
model and then computes an optimal configuration for a small
number of features. Their studies show that with an increasing
number of features the computation time grows exponentially.

White et al. [24], [25] enable users to define constraints on
non-functional properties to derive a product with desired non-
functional properties. They propose a solution based on filtered
Cartesian flattening to approximate a nearly optimal product for
even large scale feature models. In contrast to our approach,
they do not consider the measurement and computation of
a feature’s non-functional properties. Hence, their proposed
techniques can be combined with our computed feature values.

Only a few approaches apply measurements of non-
functional properties to SPLs. Zubrow and Chastek proposed
measures for SPL that evaluate the development effort for an
SPL [26]. Lopez-Herrejon and Apel express the complexity of
an SPL in terms of variation points with a dedicated metric [27].
An approach close to our work is the measurement of the binary
size of an aspect-oriented SPL [28]. The authors compiled
aspects in distinct files and measured the binary size. The
footprint of different products can then be computed. Another
related approach for optimizing non-functional properties
was developed in the COMQUAD project [29]. The project
focuses on techniques for tracing and adapting non-functional
properties in component-based systems. The approach requires
an own component model, which is an extension of Enterprise
JavaBeans and CORBA Components and relies on AOP as
implementation technique. In contrast to these approaches,
we consider also other properties and address the exponential
number of products that occur during the derivation process.
Furthermore, we propose an implementation and language
independent approach not restricted to aspects. Additionally,
we maintain a product-line model to explicitly address feature
interactions which is not supported by others.

Sincero et al. [30], [11] propose to estimate a product’s non-
functional properties based on a knowledge base consisting of
measurements of already produced products. Their aim is to find
a covariance between feature selection and measurement. This
way, they can give information about how a feature influences
a non-functional property during configuration. In contrast to
our approach, they do not save actually measured feature’s
non-functional properties but a quantification of how a feature
affects a property. When it comes to product derivation, they
do not present an expected value for a product’s properties, as
we do, but can show with a slider whether a feature selection
improves a property such as performance or not.

VI. CONCLUSION

We presented an approach to approximate a feature’s non-
functional properties for the prediction of non-functional
properties of products in advance without actually generating
and measuring them. The main idea is to produce a set of

products that differ in a single feature such that we can interpret
the delta in the products properties as the approximation of the
corresponding feature. We propose three different approaches
to measure approximations of features and feature interactions.
These approaches scale from linear to a quadratic complexity in
terms of the number of features in an SPL. In an evaluation, in
which we compare predicted with actual footprints in different
SPLs, we achieve an accuracy of 98 %, on average. Especially,
the approach that measures known interactions between features
achieve a high accuracy with a small number of measurements.

We believe that our approach is applicable for all quantifiable
non-functional properties. In future work, we plan to demon-
strate the generality of our approach for other non-functional
properties, such as performance. Furthermore, we are working
on ways to automatically identify feature interactions. This
way, we may reduce our fault rate and improve the efficiency
of determining a feature’s non-functional properties with only
few additional measurements.

ACKNOWLEDGMENTS

We thank Martin Kuhlemann, Thomas Thüm, and Janet
Feigenspan for helpful comments. Norbert Siegmund’s work
is supported by the German ministry of education and science
(BMBF), Nb. 01IM10002B. The work of Marko Rosenmüller,
Sven Apel, and Sergiy S. Kolesnikov is supported by the
German Research Foundation (DFG), project numbers #SA
465/34-1 #AP 206/2-1, and #AP 206/4-1. Kästner’s work is
supported by ERC grant #203099

REFERENCES

[1] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

[2] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-
Oriented Domain Analysis (FODA) Feasibility Study,” SEI, Tech. Rep.
CMU/SEI-90-TR-21, 1990.

[3] K. Czarnecki and U. Eisenecker, Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[4] T. Henzinger and J. Sifakis, “The discipline of embedded systems design,”
Computer, vol. 40, no. 10, pp. 32 –40, 2007.

[5] T. A. Henzinger, “Two challenges in embedded systems design: Pre-
dictability and robustness,” Philos Transact A Math Phys Eng Sci., vol.
366, no. 1881, pp. 3727–3736, 2008.

[6] M. Steger, C. Tischer, B. Boss, A. Müller, O. Pertler, W. Stolz, and
S. Ferber, “Introducing PLA at Bosch gasoline systems: Experiences
and practices,” in Proc. Int’l Software Product Line Conference. IEEE
Computer Society, 2004, pp. 34–50.

[7] R. Lotufo, S. She, T. Berger, A. Wasowski, and K. Czarnecki, “Evolution
of the Linux kernel variability model,” in Proc. Int’l Software Product
Line Conference. Springer-Verlag, 2010, pp. 136–150.

[8] P. Toft, D. Coleman, and J. Ohta, “A cooperative model for cross-
divisional product development for a software product line,” in Proc.
Int’l Software Product Line Conference. Kluwer Academic Publishers,
2000, pp. 111–132.

[9] S. S. Stevens, “On the theory of scales of measurement,” Sciences, vol.
103, no. 2684, pp. 677–680, 1946.

[10] N. Siegmund, M. Rosenmüller, M. Kuhlemann, C. Kästner, and G. Saake,
“Measuring non-functional properties in software product lines for product
derivation,” in Proc. Asia-Pacific Software Engineering Conference.
IEEE Computer Society, 2008, pp. 187–194.

[11] J. Sincero, W. Schroder-Preikschat, and O. Spinczyk, “Approaching non-
functional properties of software product lines: Learning from products,”
in Proc. Asia-Pacific Software Engineering Conference. IEEE Computer
Society, 2010, pp. 147–155.

[12] N. Siegmund, M. Kuhlemann, M. Rosenmüller, C. Kästner, and G. Saake,
“Integrated product line model for semi-automated product derivation
using non-functional properties,” in Proc. Workshop on Variability
Modelling of Software-intensive Systems. University of Duisburg-Essen,
2008, pp. 25–31.

[13] S. Oster, F. Markert, and P. Ritter, “Automated incremental pairwise
testing of software product lines,” in Proc. Int’l Software Product Line
Conference. IEEE Computer Society, 2010, pp. 196–210.

[14] S. Apel and C. Kästner, “An overview of feature-oriented software
development,” Object Technology, vol. 8, no. 5, pp. 49–84, 2009.

[15] T. Anderson and J. Finn, The New Statistical Analysis of Data. Springer,
1996.

[16] T. Thüm, D. Batory, and C. Kästner, “Reasoning about edits to feature
models,” in Proc. Int’l Conf. Software Engineering. IEEE Computer
Society, 2009, pp. 254–264.

[17] D. Batory, “Feature Models, Grammars, and Propositional Formulas,” in
Proc. Int’l Software Product Line Conference, 2005, pp. 7–20.

[18] M. Antkiewicz and K. Czarnecki, “FeaturePlugin: Feature modeling plug-
in for eclipse,” in Workshop on eclipse technology eXchange. ACM
Press, 2004, pp. 67–72.

[19] K. Czarnecki, S. Helsen, and U. W. Eisenecker, “Staged configuration
using feature models,” in Proc. Int’l Software Product Line Conference,
2004, pp. 266–283.

[20] G. Botterweck, D. Nestor, A. Preußner, C. Cawley, and S. Thiel, “Towards
supporting feature configuration by interactive visualization,” in Proc.
Workshop on Visualisation in Software Product Line Engineering. IEEE
Computer Society, 2007, pp. 125–131.

[21] R. Rabiser, D. Dhungana, and P. Grünbacher, “Tool support for product
derivation in large-scale product lines: A wizard-based approach,” in
Proc. Workshop on Visualisation in Software Product Line Engineering.
IEEE Computer Society, 2007, pp. 119–124.

[22] D. Benavides, A. Ruiz-Cortés, and P. Trinidad, “Automated reasoning
on feature models,” in Proc. of Int’l Conf. on Advanced Information
Systems Engineering. Springer-Verlag, 2005, pp. 491–503.

[23] D. Benavides, S. Segura, P. Trinidad, and A. R. Cortés, “FAMA:
Tooling a framework for the automated analysis of feature models,” in
Proc. Workshop on Variability Modelling of Software-intensive Systems.
Springer-Verlag, 2007, pp. 129–134.

[24] J. White, D. C. Schmidt, E. Wuchner, and A. Nechypurenko, “Automating
product-line variant selection for mobile devices,” in Proc. Int’l Software
Product Line Conference. IEEE Computer Society, 2007, pp. 129–140.

[25] J. White, B. Dougherty, and D. C. Schmidt, “Selecting highly optimal
architectural feature sets with filtered cartesian flattening,” Journal of
Systems and Software, vol. 82, no. 8, pp. 1268–1284, 2009.

[26] D. Zubrow and G. Chastek, “Measures for Software Product Lines,” SEI,
Tech. Rep. CMU/SEI-2003-TN-031, 2003.

[27] R. Lopez-Herrejon and S. Apel, “Measuring and characterizing cross-
cutting in aspect-based programs: Basic metrics and case studies,” in
Proc. Int’l Conf. on Fundamental Approaches to Software Engineering.
Springer-Verlag, 2007, pp. 422–437.

[28] F. Hunleth and R. Cytron, “Footprint and feature management using
aspect-oriented programming techniques,” in Proc. Joint Conf. Languages,
Compilers, and Tools for Embedded Systems & Software and Compilers
for Embedded Systems. ACM Press, 2002, pp. 38–45.

[29] R. Aigner, M. Pohlack, S. Röttger, and S. Zschaler, “Towards pervasive
treatment of non-functional properties at design and run-time,” in Proc.
Int’l Conf. Software and Systems Engineering and their Applications.
CNAMCMSL, 2003.

[30] J. Sincero, O. Spinczyk, and W. Schröder-Preikschat, “On the configu-
ration of non-functional properties in software product lines,” in Proc.
Software Product Line Conference, Doctoral Symposium. Kindai Kagaku
Sha Co. Ltd., 2007, pp. 167–173.

